A Direct Proof of the Prime Number Theorem using Riemann’s Prime-counting Function

نویسندگان

چکیده

In this paper, we develop a novel analytic method to prove the prime number theorem in de la Vall\'ee Poussin's form: $$ \pi(x)=\operatorname{li}(x)+\mathcal O(xe^{-c\sqrt{\log x}}) Instead of performing asymptotic expansion on Chebyshev functions as conventional methods, new approach uses contour-integration analyze Riemann's counting function $J(x)$, which only differs from $\pi(x)$ by $\mathcal O(\sqrt x/\log x)$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simple Proof of the Prime Number Theorem

A form of this was conjectured by Gauss about 1800, [Chebyshev 1848/52] and [Chebyshev 1850/52] made notable progress with essentially elementary methods. The landmark paper Riemann 1859] made clear the intimate connection between prime numbers and the behavior of ζ(s) as a function of a complex variable. The theorem was proven independently by [Hadamard 1896] and [de la Vallée Poussin 1896] by...

متن کامل

On the Means of the Values of Prime Counting Function

In this paper, we investigate the means of the values of prime counting function $pi(x)$. First, we compute the arithmetic, the geometric, and the harmonic means of the values of this function, and then we study the limit value of the ratio of them.

متن کامل

A formally verified proof of the prime number theorem (draft)

The prime number theorem, established by Hadamard and de la Vallée Poussin independently in 1896, asserts that the density of primes in the positive integers is asymptotic to 1/ ln x. Whereas their proofs made serious use of the methods of complex analysis, elementary proofs were provided by Selberg and Erdös in 1948. We describe a formally verified version of Selberg’s proof, obtained using th...

متن کامل

The Prime Number Theorem

The Prime Number Theorem asserts that the number of primes less than or equal to x is approximately equal to x log x for large values of x (here and for the rest of these notes, log denotes the natural logarithm). This quantitative statement about the distribution of primes which was conjectured by several mathematicians (including Gauss) early in the nineteenth century, and was finally proved ...

متن کامل

The Elementary Proof of the Prime Number Theorem

P rime numbers are the atoms of our mathematical universe. Euclid showed that there are infinitely many primes, but the subtleties of their distribution continue to fascinate mathematicians. Letting p(n) denote the number of primes p B n, Gauss conjectured in the early nineteenth century that pðnÞ#n=lnðnÞ. In 1896, this conjecture was proven independently by Jacques Hadamard and Charles de la V...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of physics

سال: 2022

ISSN: ['0022-3700', '1747-3721', '0368-3508', '1747-3713']

DOI: https://doi.org/10.1088/1742-6596/2287/1/012008